lunes, 23 de marzo de 2009

Genes Letales



Los alelos letales son alelos mutantes que causan la muerte de los individuos.

El alelo que causa la muerte de un organismo es llamado alelo letal y el gen involucrado es llamado gen esencial. Genes esenciales son genes que al mutar pueden resultar en un fenotipo letal.

Alelo letal dominante es aquel que causa la muerte en heterocigosis. Alelo letal recesivo es aquel que causa la muerte en homocigosis.

Un ejemplo de un gen esencial, es el gen para el color amarillo del cuerpo en ratones. El color amarillo es una característica codificada por AY. Ratones genotípicamente AYAY no son viables y mueren antes del nacimiento. Ratones AY A son amarillos y ratones A A son no amarillos.

Entonces, cuando ratones amarillos son cruzados con ratones no amarillo, la progenie muestra la proporción esperada de 1:1 de ratones amarillos versus no amarillos.

Cuando los ratones heterocigotos de la generación F1 son cruzados entre sí, esperaríamos una proporción 1/4 homocigoto para el color amarillo, 1/2 heterocigoto para el color amarillo y 1/4 homocigoto para el no amarillo. Pero, los resultados obtenidos indican que dos tercios son amarillos y un tercio no son amarillos, ya que el primer 1/4 muere antes de nacer.

El alelo amarillo posee un efecto dominante sobre el alelo no amarillo, pero sucede que cuando el ratón es homocigoto para este alelo ocurre un efecto letal, en otras palabras el alelo amarillo es un alelo letal recesivo. (Ver abajo)


Translocación



El término translocación se utiliza cuando se presentan modificaciones en la ubicación de determinado material cromosómico. Existen dos tipos de translocaciones: recíproca y robertsoniana. En una translocación recíproca, dos cromosomas diferentes intercambian segmentos entre sí.


En una translocación robertsoniana, un cromosoma completo se adhiere a otro en el centrómero. El centromere es la parte de centro de un cromosoma que aparezca "pellizcado" entre los brazos "p" y "q".


Este nuevo cromosoma que se forma se denomina cromosoma por translocación. La translocación de este ejemplo se encuentra entre los cromosomas 14 y 21. Cuando un bebé nace con este tipo de cromosoma por translocación (entre el 14 y el 21), además de un cromosoma 14 normal y dos cromosomas 21 normales, el bebé sufrirá síndrome de Down, también denominado síndrome de Down por translocación.

Deleción



Es un tipo especial de mutación que consiste en la pérdida de un fragmento de ADN de un cromosoma. La deleción de un gen o de parte de un gen puede ocasionar una enfermedad o una anomalía. La deleción de material genético puede afectar desde un solo nucleótido (deleción puntual) a grandes regiones visibles citogenéticamente; tal es el caso de:

Codigo Genético


El codigo genetico es el conjunto de instrucciones que sirven para fabricar proteinas a partir de un orden de los nucleótidos que constituyen el ADN. Este codigo determina que cada grupo de tres nucleótidos codifica un aminoácido.

El código genético es la regla de correspondencia entre la serie de nucleótidos en que se basan los ácidos nucleicos y las series de aminoácidos (polipéptidos) en que se basan las proteínas. Es como el diccionario que permite traducir la información genética a estructura de proteína. A, T, G, y C son las "letras" del código genético y representan las bases nitrogenadas adenina, timina, guanina y citosina, respectivamente. Cada una de estas bases forma, junto con un glúcido (pentosa) y un grupo fosfato, un nucleótido; el ADN y el ARN son polímeros formados por nucleótidos encadenados.

Cada tres nucleótidos de la cadena (cada triplete) forman una unidad funcional llamada codón. Como en cada cadena pueden aparecer cuatro nucleótidos distintos (tantos como bases nitrogenadas, que son el componente diferencial) caben 43 (4x4x4, es decir, 64) combinaciones o codones distintos. A cada codón le corresponde un único “significado”, que será o un aminoácido, lo que ocurre en 61 casos, o una instrucción de “final de traducción”, en los tres casos restantes (ver la tabla). La combinación de codones que se expresa en una secuencia lineal de nucleótidos, conforman cada gen necesario para producir la síntesis de una macromolécula con función celular específica.

Durante el proceso de traducción (síntesis de proteína) el mensaje genético es leído de una cadena de ARN, colocando cada vez el aminoácido indicado por el codón siguiente según la regla que llamamos código genético.

Transcripcion del ARN




Es un flujo unidireccional de información aunque en algunos virus se sintetiza ADN a partir de ARN con la retrotranscripción o transcripción inversa.

EL ARNm

A partir de una cadena de ADN molde se forma una cadena de ARN monocatenario llamado ARNm o mensajero.

El ARNm es un completo reflejo de las bases del DNA, es muy heterogéneo con respecto al tamaño, ya que las proteínas varían mucho en sus pesos moleculares. Es capaz de asociarse con ribosomas para la síntesis de proteínas y poseen una alta velocidad de recambio debido a que se degradaría rápidamente también contienen U en lugar de T.

Los productos de la transcripción no son sólo ARNm sino que también se forma ARNt y ARNr. Dentro del ADN hay genes que codifican para ARNt y ARNr. La replicación y la transcripción difieren en un aspecto muy importante, durante la replicación se copia el cromosoma de ADN completo, pero la transcripción es selectiva, se puede regular as¡ la transcripción del ADN. Secuencias reguladoras específicas indican el principio y el fin de los segmentos de ADN que se tienen que transcribir, as¡ como que cadena se utilizar de molde. La cadena que sirve como molde al ARN es la 3'-5' y se llama con sentido y la otra es la antisentido cuya secuencia coincide con la del ARNm transcrito.

EL ARNt

Los ARNt son relativamente pequeños y monocatenarios. Como mínimo, ocho de los residuos de nucleótidos de todos los tRNA tienen bases modificadas infrecuentes pero que son derivados metilados de las principales. Tienen un residuo de G en el extremo 5', y una secuencia 5'CCA3' en el extremo 3'. Forman una estructura en forma de hoja de trébol concuatro brazos mientras que su estructura tridimensional tiene el aspecto de una L retorcida. En el ARNt est n los anticodones que son tres bases complementarias del ARNm que codifican las proteínas.


EL ARNr

El ARN ribosómico forma parte de los ribosomas y los hay de diferentes coeficientes de sedimentación. En procariotas el ribosoma es de 70 S, siendo su subunidad pequeña de 30 S y la grande de 50 S. La subunidad pequeña está formada por ARNr 16 S, y la grande por ARNr 5 S y 23 S. En eucariotas el ribosoma es de 80 S, siendo su subunidad pequeña de 40 S y la grande de 60 S. La subunidad pequeña está formada por ARNr 18 S, y la grande por ARNr 5 S, 5.8 S y 28 S. Los genes del ARNr actúan como organizadores nucleolares.


ARN POLIMERASA

Es una RNA polimerasa dirigida por ADN. Es una enzima que forma el enlace fosfodiéster en el RNA en crecimiento mediante un ataque nucleofílico al nucleótido entrante. No necesita cebador y sintetiza en dirección 5'-3'.

En procariotas la transcripción y la traducción es simultánea, mientras que las eucariotas requieren primero una maduración del ARNm y después se produce la traducción.



FASES DE LA TRANSCRIPCIÓN

Se requiere una región promotora y otra terminadora. El factor sigma es el factor de la transcripción como figura más arriba. La RNA pol se une al molde en los centros promotores, es decir, en secuencias específicas del ADN para la unión de ARN pol. Poseen una serie de características y reciben el nombre de secuencias consenso. Los promotores están alineados de acuerdo con sus homologías, o secuencias de bases similares que aparecen justo delante de la primera base transcrita llamada punto de iniciación. El factor sigma permite que la enzima reconozca y se una específicamente a las regiones promotoras. En primer lugar la holoenzima busca un promotor e inicialmente se une a ‚l de una manera laxa.

Iniciación

Una vez que sigma se ha unido al promotor, se une el resto de la enzima y se forma una estructura llamada "complejo del promotor cerrado". A continuación se desenrolla un tramo de ADN con lo que queda al descubierto el sitio de iniciación. La RNA pol se fija más fuertemente formando el "complejo del promotor abierto". Cuando entra el segundo nucleótido empieza a formarse el enlace fosfodiéster. Cuando la RNA pol se ha elongado un número pequeño de nucleótidos sigma se separa del núcleo.

Elongación

La RNA pol debe sintetizar ARN. Se sintetiza siempre en dirección 5'-3'. Pero para sintetizarlo se debe desenrollar el ADN una corta distancia llamada "burbuja de replicación". La elongación presenta dos problemas: el dúplex debe enrollarse por detrás y desenrollarse por delante. Así la RNA sigue el sentido de desenrollado y el RNA se enrolla alrededor del dúplex con lo que no se produce superenrollamiento.

Además las topoisomerasas alivian las tensiones eliminando los superenrollamientos. Se da entonces una región infraenrollada por detrás y otra sobreenrollada por delante. El ARN se sintetiza por emparejamiento de bases con una de las cadenas de ADN en una región desenrollada transitoriamente. A medida que la región de desenrollamiento avanza, el ADN de doble cadena se reconstituye por detrás de ella, desplazando al ARN en forma de una cadena polinucleotida simple. Así, hay un momento en el que se forma un híbrido de ADN:ARN.

Terminación

La polimerasa de RNA reconoce también señales de terminación de la cadena. Se dan dos tipos de terminación: directa o mediada por proteínas.

La terminación directa hace referencia a determinadas secuencias palindrómicas que cuando el ARN se transcribe se enrollan en forma de horquilla y pierde estabilidad con lo que la cadena se disocia.Después de la horquilla viene una región de poli(U) que parece actuar como señal para que se suelte la polimerasa de ARN y termine la transcripción.

La terminación mediada por proteínas necesita de la proteína rho que reconoce la señal de terminación. No tienen la cadena de poli(U) cuando se produce este mecanismo. Rho es un hexámero formado por seis subunidades idénticas que aprovecha la hidrólisis de ATP para desencadenar la reacción de terminación. EN primer lugar rho se une a un sitio específico del ARN llamado rut, tras unirse a él rho viaja en dirección 5'-3' hasta que encuentra a la ARN pol y desenrolla el segmento bicatenario RNA-DNA formado, por lo que se libera el RNA y la RNA pol cesando la transcripción.


Estructura DNA


El ADN es un ácido nucleico formado por nucleótidos. Cada nucleótido consta de tres elementos:


  1. un azúcar: desoxirribosa en este caso (en el caso de ARN o ácido ribonucleico, el azúcar que lo forma es una ribosa),
  2. un grupo fosfato y
  3. una base nitrogenada
Si la molécula tiene sólo el azúcar unido a la base nitrogenada entonces se denominanucleósido.

Las bases nitrogenadas que constituyen parte del ADN son: adenina (A), guanina (G), citosina (C) y timina (T). Estas forman puentes de hidrógeno entre ellas, respetando una estricta complementariedad: A sólo se aparea con T (y viceversa) mediante dos puentes de hidrógeno, y G sólo con C (y viceversa) mediante 3 puentes de hidrógeno.

Los extremos de cada una de las hebras del ADN son denominados 5’-P (fosfato) y 3’–OH (hidroxilo) en la desoxirribosa. Las dos cadenas se alinean en forma paralela, pero en direcciones inversas (una en sentido 5’ → 3’ y la complementaria en el sentido inverso), pues la interacción entre las dos cadenas está determinada por los puentes de hidrógeno entre sus bases nitrogenadas. Se dice, entonces, que las cadenas son antiparalelas.

Constitución Del DNA


El ácido desoxirribonucleico es una molécula de gran peso molecular (macromolécula) que está constituida por tres sustancias distintas: ácido fosfórico, un monosacárido aldehídico del tipo pentosa (la desoxirribosa), y una base nitrogenada cíclica que puede ser púrica (adenina ocitosina) o pirimidínica (timina o guanina). La unión de la base nitrogenada (citosina, adenina, guanina o timina) con la pentosa (desoxirribosa) forma un nucleósido; éste, uniéndose al ácido fosfórico, nos da un nucleótido; la unión de los nucleótidos entre sí en enlace diester nos da el polinucleótido, en este caso el ácido desoxirribonucleico. 
Las bases nitrogenadas se hallan en relación molecular 1:1, la relación adenina + timina / guanina + citosina es de valor constante para cada especie animal. 

Estructuralmente la molécula de ADN se presenta en forma de dos cadenas helicoidales arrolladas alrededor de un mismo eje (imaginario); las cadenas están unidas entre sí por las bases que la hacen en pares. Los apareamientos son siempre adenina-timina y citosina-guanina.